Enumerate "Data" Big Idea from College Board

Some of the big ideas and vocab that you observe, talk about it with a partner ...

  • "Data compression is the reduction of the number of bits needed to represent data"
  • "Data compression is used to save transmission time and storage space."
  • "lossy data can reduce data but the original data is not recovered"
  • "lossless data lets you restore and recover"

The Image Lab Project contains a plethora of College Board Unit 2 data concepts. Working with Images provides many opportunities for compression and analyzing size.

Image Files and Size

Here are some Images Files. Download these files, load them into images directory under _notebooks in your Blog. - Clouds Impression

Describe some of the meta data and considerations when managing Image files. Describe how these relate to Data Compression ...

  • File Type, PNG and JPG are two types used in this lab: Not every file type is compatible for the same type of resizing, compression, etc. For instance, a jpg and png file may not use the same type of compression method.
  • Size, height and width, number of pixels: When managing image files, the height, width, and size can be adjusted when compressing. Later on in my hacks, we can see how I reduced the height and width of an original jpg file by 4x.
  • Visual perception, lossy compression: Lossy compression is when the file size of an image is compressed, and the visual perception experience of the image deteriorates; for instance, an image's quality becomes more fuzzy and less clear.

Python Libraries and Concepts used for Jupyter and Files/Directories

Introduction to displaying images in Jupyter notebook

IPython

Support visualization of data in Jupyter notebooks. Visualization is specific to View, for the web visualization needs to be converted to HTML.

pathlib

File paths are different on Windows versus Mac and Linux. This can cause problems in a project as you work and deploy on different Operating Systems (OS's), pathlib is a solution to this problem.

  • What are commands you use in terminal to access files?:cd to change directory, ls to list the files in a directory, and cat to read the insides of a file through terminal.- What are the command you use in Windows terminal to access files? cd is still used to change directory and dir is more often used to list the files in a directory.
  • What are some of the major differences? Some of the commands to view files may be different, and Linux uses forward slashes while Windows uses backwards slashes, making the absolute directory paths different between the two OSs.

Provide what you observed, struggled with, or leaned while playing with this code.

  • Why is path a big deal when working with images? Path is a big deal, as all images are stored in folders, and to access those images, the path has to be correct.
  • How does the meta data source and label relate to Unit 5 topics? Unit 5 was about programs that can analyze data. The meta data source and label relates to these topics, since metadata contains all of the unique information for an image, and the data can be outputted onto the screen from a program.
  • Look up IPython, describe why this is interesting in Jupyter Notebooks for both Pandas and Images? IPython is a Python interactive shell which can be utilized to display images. Furthermore, Pandas can be used as an imported module to extract certain metadata from these images.
from IPython.display import Image, display
from pathlib import Path  # https://medium.com/@ageitgey/python-3-quick-tip-the-easy-way-to-deal-with-file-paths-on-windows-mac-and-linux-11a072b58d5f

# prepares a series of images
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Peter Carolin", 'label': "Clouds Impression", 'file': "clouds-impression.png"},
            {'source': "Peter Carolin", 'label': "Lassen Volcano", 'file': "lassen-volcano.jpg"}
        ]
    for image in images:
        # File to open
        image['filename'] = path / image['file']  # file with path
    return images

def image_display(images):
    for image in images:  
        display(Image(filename=image['filename']))


# Run this as standalone tester to see sample data printed in Jupyter terminal
if __name__ == "__main__":
    # print parameter supplied image
    green_square = image_data(images=[{'source': "Internet", 'label': "Green Square", 'file': "green-square-16.png"}])
    image_display(green_square)
    
    smiley = image_data(images=[{'source': "Internet", 'label': "Smiley", 'file': "smiley.png"}])
    image_display(smiley)
    
    # display default images from image_data()
    default_images = image_data()
    image_display(default_images)
    

Reading and Encoding Images (2 implementations follow)

PIL (Python Image Library)

Pillow or PIL provides the ability to work with images in Python. Geeks for Geeks shows some ideas on working with images.

base64

Image formats (JPG, PNG) are often called *Binary File formats, it is difficult to pass these over HTTP. Thus, base64 converts binary encoded data (8-bit, ASCII/Unicode) into a text encoded scheme (24 bits, 6-bit Base64 digits). Thus base64 is used to transport and embed binary images into textual assets such as HTML and CSS.- How is Base64 similar or different to Binary and Hexadecimal?: Base64 is similar to binary and hex, since it is an encoding format which can convert a normal string/number into a series of encoded characters. It is different from binary and hexadecimal in the base that it uses. Base64 uses base 64 (0-63), while binary uses base 2 (0-1) and hexadecimal uses base 16 (0-9 and A-F).

  • Translate first 3 letters of your name to Base64.: Var --> VmFy

numpy

Numpy is described as "The fundamental package for scientific computing with Python". In the Image Lab, a Numpy array is created from the image data in order to simplify access and change to the RGB values of the pixels, converting pixels to grey scale.

io, BytesIO

Input and Output (I/O) is a fundamental of all Computer Programming. Input/output (I/O) buffering is a technique used to optimize I/O operations. In large quantities of data, how many frames of input the server currently has queued is the buffer. In this example, there is a very large picture that lags.

  • Where have you been a consumer of buffering?:I have been a consumer of buffering when watching movies/TV shows online on sites such as 123movies, Soap2Day, etc.- From your consumer experience, what effects have you experienced from buffering? From buffering, the video/movie file often lags very consistently, and some parts of the video are simply unable to load, despite refreshing the page. This creates a bad movie watching experience, as parts of the movie are simply cut out.
  • How do these effects apply to images?: Buffering can be used to add certain edits to the features of images, such as greyscale, redscale, etc.

Data Structures, Imperative Programming Style, and working with Images

Introduction to creating meta data and manipulating images. Look at each procedure and explain the the purpose and results of this program. Add any insights or challenges as you explored this program.

  • Does this code seem like a series of steps are being performed?:Yes, it seems like a series of steps are being performed to manipulate the images.- Describe Grey Scale algorithm in English or Pseudo code?: First, the series of images are prepared and added to the "images" dictionary. Then, to get the greyscale of the image, the average of all the pixels are taken, and the new image is loaded based on the averages.
  • Describe scale image? What is before and after on pixels in three images?: Scale image is a feature allowing for the images to get scaled up or down in size. Before scaling, the pixels are of a larger size, but after the averages of all the pixels are taken, they are compressed down to a smaller size.
  • Is scale image a type of compression? If so, line it up with College Board terms described?: Yes, scaling an image is a type of compression: lossy compression. This is where the image file size is reduced, but the image quality is also deteriorated.
from IPython.display import HTML, display
from pathlib import Path  # https://medium.com/@ageitgey/python-3-quick-tip-the-easy-way-to-deal-with-file-paths-on-windows-mac-and-linux-11a072b58d5f
from PIL import Image as pilImage # as pilImage is used to avoid conflicts
from io import BytesIO
import base64
import numpy as np

# prepares a series of images
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Internet", 'label': "Green Square", 'file': "green-square-16.png"},
            {'source': "Peter Carolin", 'label': "Clouds Impression", 'file': "clouds-impression.png"},
            {'source': "Peter Carolin", 'label': "Lassen Volcano", 'file': "lassen-volcano.jpg"}
        ]
    for image in images:
        # File to open
        image['filename'] = path / image['file']  # file with path
    return images

# Large image scaled to baseWidth of 320
def scale_image(img):
    baseWidth = 320
    scalePercent = (baseWidth/float(img.size[0]))
    scaleHeight = int((float(img.size[1])*float(scalePercent)))
    scale = (baseWidth, scaleHeight)
    return img.resize(scale)

# PIL image converted to base64
def image_to_base64(img, format):
    with BytesIO() as buffer:
        img.save(buffer, format)
        return base64.b64encode(buffer.getvalue()).decode()

# Set Properties of Image, Scale, and convert to Base64
def image_management(image):  # path of static images is defaulted        
    # Image open return PIL image object
    img = pilImage.open(image['filename'])
    
    # Python Image Library operations
    image['format'] = img.format
    image['mode'] = img.mode
    image['size'] = img.size
    # Scale the Image
    img = scale_image(img)
    image['pil'] = img
    image['scaled_size'] = img.size
    # Scaled HTML
    image['html'] = '<img src="data:image/png;base64,%s">' % image_to_base64(image['pil'], image['format'])
    
# Create Grey Scale Base64 representation of Image
def image_management_add_html_grey(image):
    # Image open return PIL image object
    img = image['pil']
    format = image['format']
    
    img_data = img.getdata()  # Reference https://www.geeksforgeeks.org/python-pil-image-getdata/
    image['data'] = np.array(img_data) # PIL image to numpy array
    image['gray_data'] = [] # key/value for data converted to gray scale

    # 'data' is a list of RGB data, the list is traversed and hex and binary lists are calculated and formatted
    for pixel in image['data']:
        # create gray scale of image, ref: https://www.geeksforgeeks.org/convert-a-numpy-array-to-an-image/
        average = (pixel[0] + pixel[1] + pixel[2]) // 3  # average pixel values and use // for integer division
        if len(pixel) > 3:
            image['gray_data'].append((average, average, average, pixel[3])) # PNG format
        else:
            image['gray_data'].append((average, average, average))
        # end for loop for pixels
        
    img.putdata(image['gray_data'])
    image['html_grey'] = '<img src="data:image/png;base64,%s">' % image_to_base64(img, format)


# Jupyter Notebook Visualization of Images
if __name__ == "__main__":
    # Use numpy to concatenate two arrays
    images = image_data()
    
    # Display meta data, scaled view, and grey scale for each image
    for image in images:
        image_management(image)
        print("---- meta data -----")
        print(image['label'])
        print(image['source'])
        print(image['format'])
        print(image['mode'])
        print("Original size: ", image['size'])
        print("Scaled size: ", image['scaled_size'])
        
        print("-- original image --")
        display(HTML(image['html'])) 
        
        print("--- grey image ----")
        image_management_add_html_grey(image)
        display(HTML(image['html_grey'])) 
    print()
---- meta data -----
Green Square
Internet
PNG
RGBA
Original size:  (16, 16)
Scaled size:  (320, 320)
-- original image --
--- grey image ----
---- meta data -----
Clouds Impression
Peter Carolin
PNG
RGBA
Original size:  (320, 234)
Scaled size:  (320, 234)
-- original image --
--- grey image ----
---- meta data -----
Lassen Volcano
Peter Carolin
JPEG
RGB
Original size:  (2792, 2094)
Scaled size:  (320, 240)
-- original image --
--- grey image ----

Data Structures and OOP

Most data structures classes require Object Oriented Programming (OOP). Since this class is lined up with a College Course, OOP will be talked about often. Functionality in remainder of this Blog is the same as the prior implementation. Highlight some of the key difference you see between imperative and oop styles.

  • Read imperative and object-oriented programming on Wikipedia
  • Consider how data is organized in two examples, in relations to procedures
  • Look at Parameters in Imperative and Self in OOP

Additionally, review all the imports in these three demos. Create a definition of their purpose, specifically these ...

  • PIL:Stands for Python Imaging Library, and it adds many capabilities for processing different types of images. It is an open-source library, and it is often used to manipulate imported image properties.- numpy: This is another type of library that allows for the processing of mathematical functions in programs.
  • base64: This is an encoding algorithm representing binary data as text.
from IPython.display import HTML, display
from pathlib import Path  # https://medium.com/@ageitgey/python-3-quick-tip-the-easy-way-to-deal-with-file-paths-on-windows-mac-and-linux-11a072b58d5f
from PIL import Image as pilImage # as pilImage is used to avoid conflicts
from io import BytesIO
import base64
import numpy as np


class Image_Data:

    def __init__(self, source, label, file, path, baseWidth=320):
        self._source = source    # variables with self prefix become part of the object, 
        self._label = label
        self._file = file
        self._filename = path / file  # file with path
        self._baseWidth = baseWidth

        # Open image and scale to needs
        self._img = pilImage.open(self._filename)
        self._format = self._img.format
        self._mode = self._img.mode
        self._originalSize = self.img.size
        self.scale_image()
        self._html = self.image_to_html(self._img)
        self._html_grey = self.image_to_html_grey()


    @property
    def source(self):
        return self._source  
    
    @property
    def label(self):
        return self._label 
    
    @property
    def file(self):
        return self._file   
    
    @property
    def filename(self):
        return self._filename   
    
    @property
    def img(self):
        return self._img
             
    @property
    def format(self):
        return self._format
    
    @property
    def mode(self):
        return self._mode
    
    @property
    def originalSize(self):
        return self._originalSize
    
    @property
    def size(self):
        return self._img.size
    
    @property
    def html(self):
        return self._html
    
    @property
    def html_grey(self):
        return self._html_grey
        
    # Large image scaled to baseWidth of 320
    def scale_image(self):
        scalePercent = (self._baseWidth/float(self._img.size[0]))
        scaleHeight = int((float(self._img.size[1])*float(scalePercent)))
        scale = (self._baseWidth, scaleHeight)
        self._img = self._img.resize(scale)
    
    # PIL image converted to base64
    def image_to_html(self, img):
        with BytesIO() as buffer:
            img.save(buffer, self._format)
            return '<img src="data:image/png;base64,%s">' % base64.b64encode(buffer.getvalue()).decode()
            
    # Create Grey Scale Base64 representation of Image
    def image_to_html_grey(self):
        img_grey = self._img
        numpy = np.array(self._img.getdata()) # PIL image to numpy array
        
        grey_data = [] # key/value for data converted to gray scale
        # 'data' is a list of RGB data, the list is traversed and hex and binary lists are calculated and formatted
        for pixel in numpy:
            # create gray scale of image, ref: https://www.geeksforgeeks.org/convert-a-numpy-array-to-an-image/
            average = (pixel[0] + pixel[1] + pixel[2]) // 3  # average pixel values and use // for integer division
            if len(pixel) > 3:
                grey_data.append((average, average, average, pixel[3])) # PNG format
            else:
                grey_data.append((average, average, average))
            # end for loop for pixels
            
        img_grey.putdata(grey_data)
        return self.image_to_html(img_grey)

        
# prepares a series of images, provides expectation for required contents
def image_data(path=Path("images/"), images=None):  # path of static images is defaulted
    if images is None:  # default image
        images = [
            {'source': "Internet", 'label': "Green Square", 'file': "green-square-16.png"},
            {'source': "Peter Carolin", 'label': "Clouds Impression", 'file': "clouds-impression.png"},
            {'source': "Peter Carolin", 'label': "Lassen Volcano", 'file': "lassen-volcano.jpg"}
        ]
    return path, images

# turns data into objects
def image_objects():        
    id_Objects = []
    path, images = image_data()
    for image in images:
        id_Objects.append(Image_Data(source=image['source'], 
                                  label=image['label'],
                                  file=image['file'],
                                  path=path,
                                  ))
    return id_Objects

# Jupyter Notebook Visualization of Images
if __name__ == "__main__":
    for ido in image_objects(): # ido is an Imaged Data Object
        
        print("---- meta data -----")
        print(ido.label)
        print(ido.source)
        print(ido.file)
        print(ido.format)
        print(ido.mode)
        print("Original size: ", ido.originalSize)
        print("Scaled size: ", ido.size)
        
        print("-- scaled image --")
        display(HTML(ido.html))
        
        print("--- grey image ---")
        display(HTML(ido.html_grey))
        
    print()
---- meta data -----
Green Square
Internet
green-square-16.png
PNG
RGBA
Original size:  (16, 16)
Scaled size:  (320, 320)
-- scaled image --
--- grey image ---
---- meta data -----
Clouds Impression
Peter Carolin
clouds-impression.png
PNG
RGBA
Original size:  (320, 234)
Scaled size:  (320, 234)
-- scaled image --
--- grey image ---
---- meta data -----
Lassen Volcano
Peter Carolin
lassen-volcano.jpg
JPEG
RGB
Original size:  (2792, 2094)
Scaled size:  (320, 240)
-- scaled image --
--- grey image ---

Hacks

Early Seed award

  • Add this Blog to you own Blogging site.
  • In the Blog add a Happy Face image.
  • Have Happy Face Image open when Tech Talk starts, running on localhost. Don't tell anyone. Show to Teacher.

AP Prep

  • In the Blog add notes and observations on each code cell that request an answer.
  • In blog add College Board practice problems for 2.3
  • Choose 2 images, one that will more likely result in lossy data compression and one that is more likely to result in lossless data compression. Explain.

Project Addition

  • If your project has images in it, try to implement an image change that has a purpose. (Ex. An item that has been sold out could become gray scale)

Pick a programming paradigm and solve some of the following ...

  • Numpy, manipulating pixels. As opposed to Grey Scale treatment, pick a couple of other types like red scale, green scale, or blue scale. We want you to be manipulating pixels in the image.
  • Binary and Hexadecimal reports. Convert and produce pixels in binary and Hexadecimal and display.
  • Compression and Sizing of images. Look for insights into compression Lossy and Lossless. Look at PIL library and see if there are other things that can be done.
  • There are many effects you can do as well with PIL. Blur the image or write Meta Data on screen, aka Title, Author and Image size.

Smiley svg

PROGRAMMING PARADIGMS

MANIPULATING PIXELS HACKS:

import numpy as np
from PIL import Image

# Load the image
image = Image.open('images/baltimore.jpg')

image.info['Title'] = 'Masterpiece in the Air'
image.info['Author'] = 'Vardaan Sinha'
image.info['Year'] = '2018'

img_array = np.asarray(image)

binary_pixels = np.unpackbits(img_array, axis=-1)

hex_pixels = np.apply_along_axis(lambda x: hex(int(''.join(map(str, x)), 2))[2:].zfill(2), -1, binary_pixels)

red_img = np.copy(img_array)

red_img[:, :, 1] = 0
red_img[:, :, 2] = 0

red_image = Image.fromarray(red_img)

red_image.save('images/baltimore.jpg')

resized_image = red_image.resize((red_image.width // 4, red_image.height // 4))

print(image.info)

resized_image.show()
{'jfif': 257, 'jfif_version': (1, 1), 'jfif_unit': 0, 'jfif_density': (1, 1), 'Title': 'Masterpiece in the Air', 'Author': 'Vardaan Sinha', 'Year': '2018'}

PARADIGM EXPLANATION:

In the above hacks, I attempted to utilize redscale (a different byte manipulation method), printing metadata (important information about the image), and using scaling methods to change the size of the image. I utilized an image that I took (baltimore.jpg), and created red_img to set both the green and blue channels to be 0 (in "RGB"), so that only the red was captured, therefore making it redscale. I also added three pieces of image information (metadata) that were printed. This included the name of the photograph, the photographer, and the year that the image was taken in. The additional metadata citing "jfif" is for when a jpg/jpeg file is compressed.

TWO IMAGES REPRESENTING LOSSY AND LOSSLESS COMPRESSION:

The lassen-volcano.jpg image will represent lossy compression. This is because if the image file is compressed, it will definitely have a drastically reduced file size, but the image quality will also go down, due to the very fine details in the image, and the variety of colors. It will likely become more fuzzy. On the other hand, to represent lossless compression, the green-square-16.png image can be used as an example. That image has one sole color, so the RGB pixel values are going to be the same every time (barring any image manipulation method purposely utilized), and the quality of the image will not deteriorate, while the image file size will still decrease.

CB 2.2 PRACTICE QUIZZES:

image

This was the only one with 2.2 as the listed topic.